
Designing	Systems	for	
Push-Button	Verification

Luke	Nelson,	Helgi Sigurbjarnarson,	Xi	Wang
Joint	work	with	James	Bornholt,	Dylan	Johnson,	

Arvind	Krishnamurthy,	Emina Torlak,	Kaiyuan Zhang



Formal	verification	of	systems

• Eliminate	entire	classes	of	bugs
• Write	a	spec	&	prove	impl meets	the	spec

• Verification	projects	at	UW:	Bagpipe	[OOPSLA’16],	
Neutrons	[CAV’16],	Verdi	[PLDI’15],	…

COMPCERT



Challenge	1/3:	non-trivial	efforts

• Time-consuming:	often	person-years	
• Require	high-level	of	expertise
• Example:	the	seL4	kernel
• 10	KLOC	code,	
• 480	KLOC	proof
• 11	person-years



Challenge	2/3:	spec

• What	is a	correct	system
• Low-level	correctness	is	well-understood:	no	overflow
• Some	fields	have	been	using	formal	specs:	TLA+
• Difficult	in	general

• Examples
• The	file	system	must	ensure	crash	safety
• The	OS	kernel	must	enforce	process	isolation



Challenge	3/3:	integration	w/	dev

• Learning	curve
• Improve	upon	testing	(e.g.,	Driver	Verifier)
• Moving	target
• Incremental	deployment



Push-button	verification

• System	design	for	minimizing	proof	efforts
• Verifiability	as	a	first-class	concern
• Leverage	advances	in	automated	SMT	solving
• But	need	to	use	solvers	wisely
• Limitations	on	expressiveness



From	static	analysis	to	verification

“There	has	been	a	seismic	shift	in	terms	of	the	
average	programmer	‘getting	it.’	When	you	say	
you	have	a	static	bug-finding	tool,	the	response	
is	no	longer	‘Huh?’	or	‘Lint?	Yuck.’	This	shift	
seems	due	to	static	bug	finders	being	in	wider	
use,	giving	rise	to	nice	networking	effects.”

A	Few	Billion	Lines	of	Code	Later:	Using	Static	Analysis	to	Find	
Bugs	in	the	Real	World	— Coverity,	CACM	2010



Outlines

• Yggdrasil:	writing	verified	FSes [OSDI’16]
• Hyperkernel:	a	verified	OS	kernel	[SOSP’17]
• Lessons	learned	&	future	work



Yggdrasil	[OSDI’16]

• File	systems	are	essential	for	data	integrity

• But	are	difficult	to	get	right
• Complex	on-disk	data	structures
• Must	ensure	crash	safety

• Bugs	are	hard	to	reproduce



FS	challenges

• Too	many	states
• Disks	are	large;	many	execution	paths
• Non-determinism:	crash,	reordering	writes

• Techniques
• Testing:	eXplode [OSDI	’06],	EXE	[CCS	’06]
• Interactive	proving:	FSCQ	[SOSP’15],	Cogent	[ASPLOS’16]

• How	to	automate	FS	verification



Yggdrasil:	writing	verified	FSes

• Key	ideas
• A	definition	of	FS	correctness	amenable	to	SMT	solving
• Layering	to	scale	verification
• Separating	layout	from	correctness

• Main	result:	Yxv6	file	system
• Similar	to	ext3	and	xv6
• Verified	functional	correctness
• Verified	crash	safety



Yggdrasil	overview

ficient satisfiability modulo theories (SMT) reasoning, an
extension of boolean satisfiability. Yggdrasil formulates
file system verification as an SMT problem and invokes
a state-of-the-art SMT solver (Z3 [15]) to fully automate
the proof process.

SMT reasoning is not, by itself, a push-button solu-
tion; building verified file systems also requires careful
design. Crash refinement enables programmers to im-
plement file systems by stacking layers of abstraction:
if an implementation is a crash refinement of an (often
much simpler) specification, they are indistinguishable
to higher layers. The higher layers can use lower specifi-
cations without reasoning about the implementation de-
tails. This modular design allows Yggdrasil to verify a
file system by exhausting all execution paths within a
layer while avoiding path explosion between layers.

In addition, crash refinement enables transparent
switching between different implementations that satisfy
the same specification. Programmers can use simple data
structures for verification, and then refine them to more
efficient versions with the same correctness guarantees.
Separating logical and physical concerns in this fashion
allows Yggdrasil to verify complex, high-performance
on-disk data structures.

We have used Yggdrasil to implement and verify
Yxv6+sync, a journaling file system that resembles
xv6 [14] and FSCQ [7], and Yxv6+group_commit, an
optimized variant with relaxed crash consistency [5, 37].
To demonstrate Yggdrasil on a broader set of applica-
tions, we have built Ycp, a file copy utility on top of
Yxv6; and Ylog, which resembles the persistent log from
the Arrakis operating system [36]. We have also built
general-purpose “peephole optimizers” [28] for file sys-
tem code (e.g., removing superfluous disk flushes). We
believe that the ease of verification makes Yggdrasil at-
tractive for building verified storage applications.

We have been using the Yxv6 file system, which runs
on top of FUSE [17], to self-host Yggdrasil’s daily devel-
opment on Linux. It has passed fsstress from the Linux
Test Project [26] and the SibylFS POSIX conformance
tests [42] (except for incomplete features, such as hard
links and extended attributes). We have found its per-
formance to be reasonable: within 10⇥ of ext4’s default
configuration and 3–150⇥ faster than FSCQ. Yggdrasil
focuses on single-threaded systems; verifying concurrent
implementations is beyond the scope of this paper.

This paper makes the following contributions:
• a formalization of file system crash refinement that

is amenable to fully automated SMT reasoning;
• the Yggdrasil toolkit for building verified file sys-

tems through crash refinement; and
• a case study of building the Yxv6 file system and

several other storage programs using Yggdrasil.

specification implementation consistency
invariants

verifier

compiler optimizer visualizer

C code for
file system + fsck

counterexample

failpass

Figure 1: The Yggdrasil development flow. Rectangular boxes
(within the dashed frame) denote input written by program-
mers; rounded boxes denote Yggdrasil’s components; and
curved boxes denote output. Shaded boxes are trusted to be
correct and the rest are untrusted.

The rest of the paper is organized as follows. §2 gives
a walkthrough of Yggdrasil’s usage. §3 presents formal
definitions and the main components. §4 describes the
Yxv6 file system and §5 describes other storage appli-
cations built using Yggdrasil. §6 discusses Yggdrasil’s
limitations and our experience. §7 provides implemen-
tation details. §8 evaluates correctness and performance.
§9 relates Yggdrasil to prior work. §10 concludes.

2 Overview

Figure 1 shows the Yggdrasil development flow. Pro-
grammers write the specification, implementation, and
consistency invariants all in the same language (a subset
of Python in our current prototype; see §3.2). If there
is any bug in the implementation or consistency invari-
ants, the verifier generates a counterexample to visualize
it. For better run-time performance, Yggdrasil optionally
performs optimizations (either built-in or written by de-
velopers) and re-verifies the code. Once the verification
passes, Yggdrasil emits C code, which is then compiled
and linked using a C compiler to produce an executable
file system, as well as an fsck checker.

This section gives an overview of each of these steps,
using a toy file system called YminLFS as a running ex-
ample. We will show how to specify, implement, verify,
and debug it; how to optimize its performance; and how
to get a running file system mounted via FUSE [17].

YminLFS is a log-structured file system [44]. It is kept
minimal for demonstration purposes: there are no seg-
ments, subdirectories, or garbage collection, and files are
zero-sized (no read, write, or unlink). But its core func-
tionality is still tricky to implement correctly due to non-
determinism and corner cases like overflows. In fact, the
verifier caught two bugs in our initial implementation.
The development of YminLFS took one of the authors
less than four hours, as detailed next.

2



Example	spec

class TxnDisk(BaseSpec):
def begin_tx(self):
self._txn = []

def write_tx(self, bid, data):
self._cache = self._cache.update(bid, data)
self._txn.append((bid, data))

def commit_tx(self):
with self._mach.transaction():

for bid, data in self._txn:
self._disk = self._disk.update(bid, data)



Strawman:	doesn’t	capture	crash

• Model	FS	as	a	state	machine	with	a	set	of	
operations	{	create,	rename,	etc.	}

S0 S1

I0 I1 I2 I3

spec

impl



Crash	refinement

S0 S1

I0 I1 I2 I3

spec

impl

I4 I5



Crash	refinement	definition

• Model	FS	as	a	state	machine
• Augment	each	op	with	an	explicit	crash	schedule:	
op(disk,	inp,	sched)	→	disk
• For	each	FS	op,	prove:
∀disk,	inp,	schedimpl.	∃schedspec.

opspec(disk,	inp,	schedspec)	=
opimpl(disk,	inp,	schedimpl)

• Z3	is	good	at	solving	this	form



Stack	of	layered	abstractions

• Each	layer	has	a	spec

• Each	layer	builds	upon	a	
lower	layer	spec

• Limit	verification	to	a	
single	layer	at	a	time

Yxv6 file system: Stack of layered abstractions

Each layer has a
specification

Each layer builds
upon a lower layer
specification

Limit verification to a
single layer at a time

regular files, symbolic
links, and directories

Yxv6 files

inodes

Yxv6 inodes

transactional disk

write-ahead logging

disk

specification
implementation

Crash refinement

Crash refinement

Crash refinement

16 / 24



Separate	refinement	of	layout

• Start	with	multiple	disks	
&	inefficient	layout

• Gradually	refine	to	
optimized	layout

• Separate	reasoning	of	
correctness	from	layout

log
disk

log
partition

file data
disk

file data
partition

orphan inodes
disk

orphan inodes
partition

block bitmap
disk

packed block
bitmap disk

block bitmap
partition

inode bitmap
disk

packed inode
bitmap disk

inode bitmap
parition

inode metadata
disk

packed inodes
disk

inodes
partition

direct block
pointers disk

disk

Figure 4: The refinement of disk layout of the Yxv6 file system,
from multiple disks to a single disk. The arrows A B denote
that B is a crash refinement of A.

strategies for directory entry lookup. This approach al-
lows us to treat search procedures as a black box, ab-
solving the SMT solver from the need to reason about
the many paths through the algorithm.

The second case is unlinking a file, as freeing all its
data blocks needs to write potentially many blocks. To
finitize this operation, our implementation simply moves
the inode of the file into a special orphan inodes disk,
which is a finite operation, and relies on a separate
garbage collector to reclaim the data blocks at a later
time. We further prove that reclamation is a no-op (as
per the definition in §3.1), as freeing a block referenced
by the orphan inodes disk does not affect the externally
visible state of the file system. We will summarize the
trade-offs of validation in §4.5.

4.3 Refining disk layouts

Theorem 5 gives a file system that runs on seven disks:
the write-ahead log, the file data, the block and inode
bitmaps for managing free space, the inode metadata, the
direct block pointers, and the orphan inodes. Using sep-
arate disks scales SMT reasoning, but it has two down-
sides. First, the two bitmaps use only one bit per block
and the inode metadata disk stores one inode per block,
wasting space. Second, requiring seven disks makes the
file system difficult to use. We now prove with crash re-
finement that it is correct to pack these disks into one
disk (Figure 4) similar to the xv6 file system [14].

Intuitively, it is correct to pack multiple blocks that
store data sparsely into one with a dense representation,
because the packed disk has the same or fewer possible
disk states. For instance, bitmap disks used in §4.2 store
one bit per block; the n-th bit of the bitmap is stored in

the lowest bit of block n. On the other hand, a packed
bitmap disk stores 4KB ⇥ 8 = 215 bits per block, and
the n-th bit is stored in bit n mod 215 of block n/215.
Clearly, using the packed bitmap is a crash refinement of
the sparse one. The same holds for using packed inodes.
Similarly, a single disk with multiple non-overlapping
partitions exhibits fewer states than multiple disks; for
example, a flush on a single disk will flush all the parti-
tions, but not for multiple disks. Combining these pack-
ing steps, we prove the following theorem:

Theorem 6. The Yxv6 implementation using seven non-
overlapping partitions of one asynchronous disk, with
packed bitmaps and inodes, is a crash refinement of that
using seven asynchronous disks.

4.4 Refining crash consistency models

Theorem 6 gives a synchronous file system that com-
mits a transaction for each system call. This file sys-
tem, which we call Yxv6+sync, incurs a slowdown as
it flushes the disk frequently (see §8 for performance
evaluation). The Yxv6+group_commit file system im-
plements a more relaxed crash consistency model [5, 37].
Unlike Yxv6+sync, its write-ahead logging implementa-
tion groups multiple transactions together [19].

Intuitively, doing a single combined transaction pro-
duces fewer possible disk states compared to two sepa-
rate transactions, as in the latter scheme the system can
crash in between the two and expose the intermediate
state. We prove the following theorem:

Theorem 7. Yxv6+group_commit is a crash refinement
of Yxv6+sync.

4.5 Summary of design trade-offs

Unlike conventional journaling file systems, the first
Yxv6 design in §4.2 uses multiple disks. To decide the
number of disks, we adopt a simple guideline: whenever
a part of the disk is logically separate from the rest of the
file system, such as the log or the free bitmap, we assign
a separate disk for that part. In our experience, this is
effective in scaling up SMT reasoning.

Yxv6’s final on-disk layout closely resembles that of
the xv6 and FSCQ file systems. One notable difference
is that Yxv6 uses an orphan inodes partition to manage
files that are still open but have been unlinked, similarly
to the orphan inode list [21] in ext3 and ext4. This de-
sign ensures correct atomicity behavior of unlink and
rename, especially when running with FUSE, which xv6
and FSCQ do not guarantee.

Another difference to FSCQ is that Yxv6 uses valida-
tion instead of verification in managing free blocks and
inodes. Although the resulting allocator is safe, it does
not guarantee that block or inode allocation will succeed
when there is enough space, treating such failures as a
quality-of-service issue.



Implementation	w/	Python	&	Z3

• Two	Yxv6	variants
• Yxv6+sync:	similar	to	xv6,	FSCQ	and	ext4+sync
• Yxv6+group_commit:	an	optimized	Yxv6+sync

• verified:	1.6	hours	w/	24	cores	- no	manual	proofs!

spec impl consistency inv.

Yxv6 250 1,500 5

infrastructure -- 1,500 --

FUSE stub -- 250 --



Run-time	performance

• 3–150× faster	than	ext4+sync
• Within	10× of	ext4+default

0.001

0.01

0.1

1

10

100

1000

Make Bash Make yxv6 Mailbench Largefile Smallfile

R
un

ni
ng

tim
e

in
se

co
nd

s

fscq
ext4+sync
yxv6+sync
yxv6+group_commit
ext4+default

Figure 6: Performance of file systems on an SSD, in sec-
onds (log scale; lower is better).

0.001

0.01

0.1

1

10

100

1000

Make Bash Make yxv6 Mailbench Largefile Smallfile

R
un

ni
ng

tim
e

in
se

co
nd

s

fscq
ext4+sync
yxv6+sync
yxv6+group_commit
ext4+default

Figure 7: Performance of file systems on a RAM disk, in sec-
onds (log scale; lower is better).

Yggdrasil to generate efficient C code. The idea of sep-
arating logical and physical data representations using
crash refinement further reduced the verification time by
orders of magnitude. As we will show in §8, verifying
Yxv6+sync’s theorems took less than a minute, thanks to
Z3’s efficient decision procedures, whereas Coq took 11
hours to check the proofs of FSCQ [7] (which has similar
features to Yxv6+sync).

Crash refinement requires programmers to design a
system as a state machine and implement each operation
in a finite way. File systems fit well into this paradigm.
We have used crash refinement in several contexts: to
stack layers of abstraction, to pack multiple blocks or
disks, and to relax crash consistency models. Crash re-
finement does not require advanced knowledge of pro-
gram logics (e.g., separation logic [41] in FSCQ), and is
amenable to automated SMT reasoning.

7 Implementation

Figure 5 lists the code size of the file systems and other
storage applications built using Yggdrasil, the common
infrastructure code, and the FUSE boilerplate. In total,
they consist of about 4,000 lines of Python code.

8 Evaluation

This section uses Yxv6 as a representative example to
evaluate file systems built using Yggdrasil. We aim to
answer the following questions:

• Does Yxv6 provide end-to-end correctness?
• What is the run-time performance?
• What is the verification performance?

Unless otherwise noted, all experiments were conducted
on a 4.0 GHz quad-core Intel i7-4790K CPU running
Linux 4.4.0.

Correctness. We tested the correctness of Yxv6 as
follows. First, we ran it on existing benchmarks.
Both Yxv6+sync and Yxv6+group_commit passed the
fsstress tests from the Linux Test Project [26]; they
also passed the SibylFS POSIX conformance tests [42],
except for incomplete features such as hard links or ex-

tended attributes. Second, we have been using Yxv6 to
self-host Yggdrasil’s development since early March, in-
cluding the writing of this paper; our experience is that
it is reliable for daily use. Third, we applied the disk
block enumerator from the Ferrite toolkit [5] (similar to
the Block Order Breaker [37]) to cross-check that the file
system state was consistent after a crash and recovery.

To test the correctness of Yxv6’s fsck, we manually
corrupted file system images by overwriting them with
random bytes; Yxv6’s fsck was able to detect corruption
in all these cases.

Run-time performance. To understand the run-time
performance of Yxv6, we ran a set of five benchmarks
similar to those used in FSCQ [7]: compiling the source
code of bash and Yxv6, running a mail server from the
sv6 operating system [10], and the LFS benchmark [44].

We compare the two Yxv6 variants against the verified
file system FSCQ and the ext4 file system in two con-
figurations: its default configuration (i.e., data=ordered),
and with data=journal+sync options, which together are
similar to Yxv6+sync. Although Yxv6’s implementation
is closest to xv6, we excluded xv6’s performance num-
bers as it crashed frequently on three benchmarks and did
not pass the fsstress tests.

Figure 6 shows the on-disk performance with all the
file systems running on a Samsung 850 PRO SSD. The
y-axis shows total running time in seconds (log scale).
We see that Yxv6+sync performs similarly to FSCQ and
to ext4’s slower configuration. Yxv6+group_commit,
which groups several operations into a single transaction,
outperforms those file systems by 3–150⇥ and is on av-
erage within 10⇥ of ext4’s default configuration.

To understand the CPU overhead, we repeated the ex-
periments using a RAM disk, as shown in Figure 7. The
two variants of Yxv6 have similar performance numbers.
They both outperform FSCQ, and are close in perfor-
mance to ext4 (except for the largefile benchmark). We
believe the reason is that Yxv6 benefits from Yggdrasil’s
Python-to-C compiler, while FSCQ’s performance is af-
fected by its use of Haskell code extracted from Coq.

12



Summary	of	Yggdrasil

• Push-button	verification	is	feasible	for	FS
• No	manual	proofs	on	implementation
• New	FS	correctness	definition:	crash	refinement

• FS	design	for	verification
• Model	FS	as	a	state	machine
• Verify	each	operation	using	crash	refinement
• Verify	each	layer	independently



Hyperkernel [SOSP’17]

• The	OS	Kernel	is	a	critical	component
• Isolation	is	essential	for	application	security
• Kernel	bugs	can	compromise	the	entire	system

• Manual	verification	is	costly

• Goal:	OS	design	for	automated	SMT	verification



Design	challenges

• Kernel	API	must	be	amenable	to	SMT	reasoning

• Kernel	pointers	are	difficult	to	reason	about
• kernel	runs	under	virtual	memory
• kernel	also	manipulates	the	mapping
• the	mapping	is	often	non-injective

• C	is	known	to	be	difficult	to	model



Ideas:	design	to	scale	verification

• Finite	interface:	no	loops/interrupts	in	kernel
• Use	SMT-friendly	data	structures	(e.g.,	bitmaps)
• Use	validation	whenever	possible

• Identity	mapping	in	kernel
• Separate	address	spaces	in	kernel	and	user
• “Abuse”	virtual	machine	instructions

• Verification	using	LLVM	IR	instead	of	C
• SMT	encodings	for	reference	counting,	etc.



Model	OS	as	a	state	machine
Hyperkernel: Push-Bu�on Verification of an OS Kernel SOSP ’17, October 28, 2017, Shanghai, China

user-kernel interface

. . .process process

trap handler

kernel

user

Figure 5: State transitions in Hyperkernel. At each
step process execution may either stay in user space
or trap into the kernel due to system calls, exceptions,
or interrupts. Each trap handler in the kernel runs to
completion with interrupt disabled.

use of SMT to an e�ectively decidable fragment of �rst-order
logic. This section describes how we use this restriction to
guide the design of the formalization.

We �rst present our model of the kernel behavior as a state
machine (§3.1), followed by the details of the veri�cation
process. In particular, to verify the C implementation against
the state-machine speci�cation, the veri�er translates the
semantics of the LLVM IR into an SMT expression (§3.2). To
check the state-machine speci�cation against the declarative
speci�cation (e.g., the correctness of reference counters), it
encodes crosscutting properties in a way that is amenable to
SMT solving (§3.3).

3.1 Modeling kernel behavior
The veri�er follows a standard way of modeling a kernel’s
execution as a state machine [36]. As shown in Figure 5, a
state transition can occur in response to either trap handling
or user-space execution (without trapping into the kernel).
By design, the execution of a trap handler in Hyperkernel is
atomic: it traps from user space into the kernel due to system
calls, exceptions, or interrupts, runs to completion, and re-
turns to user space. This atomicity simpli�es veri�cation by
ruling out interleaved execution, allowing the veri�er to rea-
son about each trap handler in its entirety and independently.

As mentioned earlier, Hyperkernel runs on a uniprocessor
system. However, even in this setting, ensuring the atomic
execution of trap handlers requires Hyperkernel to sidestep
concurrency issues that arise from I/O devices, namely, in-
terrupts and direct memory access (DMA), as follows.
First, the kernel executes trap handlers with interrupts

disabled, postponing interrupts until the execution returns
to user space (which will trap back into the kernel). By doing
so, each trap handler runs to completion in the kernel.
Second, since devices may asynchronously modify mem-

ory through DMA, the kernel isolates their e�ects by restrict-
ing DMA to a dedicated memory region (referred to as DMA
pages); this isolation is implemented through mechanisms

such as Intel’s VT-d Protected Memory Regions [29] and
AMD’s Device Exclusion Vector [4] con�gured at boot time.
In addition, the kernel conservatively considers DMA pages
volatile (see §3.2), where memory reads return arbitrary val-
ues. In doing so, a DMA write that occurs during kernel
execution is e�ectively equivalent to a no-op with respect to
the kernel state, removing the need to explicitly model DMA.
With this model, we now de�ne kernel correctness in

terms of state-machine re�nement. Formally, we denote each
state transition (e.g., trap handling) by a transition function f
that maps the current state s and input x (e.g., system call
arguments) to the next state f (s,x). Let fspec and fimpl be
the transition functions for the speci�cation and implemen-
tation of the same state transition, respectively. Let I be
the representation invariant of the implementation (§2.3).
Let sspec ⇠ simpl denote that speci�cation state sspec and
implementation state simpl are equivalent according to the
programmer-de�ned equivalence function (§2.4). We write
sspec ⇠I simpl as a shorthand for I (simpl)^(sspec ⇠ simpl), which
states that the representation invariant holds in the imple-
mentation and both states are equivalent. With this notation,
we de�ne re�nement as follows:

D��������� 1 (S�������������I������������� R������
����). The kernel implementation is a re�nement of the state-
machine speci�cation if the following holds for each pair of
state transition functions fspec and fimpl:

8sspec, simpl,x . sspec ⇠I simpl ) fspec(sspec,x) ⇠I fimpl(simpl,x)

To prove kernel correctness (Theorem 1), the veri�er com-
putes the SMT encoding of fspec and fimpl for each transition
function f , as well as the representation invariant I (which is
the same for all state transitions). The veri�er then asks Z3 to
prove the validity of the formula in De�nition 1 by showing
its negation to be unsatis�able. The veri�er computes fspec by
evaluating the state-machine speci�cation written in Python.
To compute fimpl and I , it performs exhaustive (all-paths)
symbolic execution over the LLVM IR of kernel code. If Z3
�nds the query unsatis�able, veri�cation succeeds. Other-
wise, if Z3 returns a counterexample, the veri�er constructs
a test case (§2.4).
Proving crosscutting properties (Theorem 2) is simpler.

Since a declarative speci�cation de�nes a predicate P over
the abstract kernel state, the veri�er checks whether P holds
during each transition of the state-machine speci�cation.
More formally:

D��������� 2 (S�����M������ S������������ C�������
����). The state-machine speci�cation satis�es the declarative
speci�cation P if the following holds for every state transition
fspec starting from state sspec with input x :

8sspec,x . P(sspec) ) P(fspec(sspec,x))

•	Assume	a	uniprocessor	system
•	Assume	initialization	and	glue	code	correct



Main	theoremsSOSP ’17, October 28, 2017, Shanghai, China L. Nelson et al.

0

264
kernel text

kernel text

direct mapping

user

kernel

virtual memory physical memory

Figure 1: A simpli�edmemory layout of Linux on x86-
64: the kernel and user space are mapped to the up-
per half and lower half of the virtual address space,
respectively. The ABI recommends the kernel text to
be mapped to the top 2 GiB, as required by the kernel
code model [52]; the kernel also has a direct mapping
of all physical memory.

A �nal challenge is that Hyperkernel, like many other
OS kernels, is written in C, a programming language that
is known to complicate formal reasoning [26, 39, 53]. It is
notably di�cult to accurately model the C semantics and
reason about C programs due to low-level operations such
as pointer arithmetic and memory access. In addition, the C
standard is intentionally underspeci�ed, allowing compilers
to exploit unde�ned behavior in order to produce e�cient
code [41, 67]. Such subtleties have led some researchers to
conclude that “there is no C program for which the standard
can guarantee that it will not crash” [40].

Hyperkernel addresses these challenges with three ideas.
First, its kernel interface is designed to be �nite: all of the
handlers for system calls, exceptions, and interrupts (collec-
tively referred to as trap handlers in this paper) are free of
unbounded loops and recursion, making it possible to encode
and verify them using SMT. Second, Hyperkernel runs in
a separate address space from user space, using an identity
mapping for the kernel; this simpli�es reasoning about ker-
nel code. To e�ciently realize this separation, Hyperkernel
makes use of x86 virtualization support provided by Intel VT-
x andAMD-V: the kernel and user processes run in root (host)
and non-root (guest) modes, respectively, using separate page
tables. Third, Hyperkernel performs veri�cation at the level
of the LLVM intermediate representation (IR) [42], which has
much simpler semantics than C while remaining su�ciently
high-level to avoid reasoning about machine details.
The kernel interface of Hyperkernel consists of 50 trap

handlers, providing support for processes, virtual memory,
�le descriptors, devices, inter-process communication, and
scheduling. We have veri�ed the correctness of this interface

declarative
speci�cation P

state-machine
speci�cation Si�1 Si Si+1

implementation Ii�1 Ii Ii+1

Figure 2: An overview of Hyperkernel veri�cation. Si
and Ii denote states of the corresponding layers; solid
arrows denote state transitions. P denotes a crosscut-
ting property that holds during every state transition.

in two steps, as shown in Figure 2. First, we have devel-
oped a speci�cation of trap handlers in a state-machine style,
describing the intended behavior of the implementation. Sec-
ond, to improve the con�dence in the correctness of the
state-machine speci�cation, we have further developed a
higher-level speci�cation in a declarative style. The declara-
tive speci�cation describes “end-to-end” crosscutting prop-
erties that the state-machine speci�cation must satisfy [60],
such as “a process can write to pages only owned by itself.”
Such properties are more intuitive and easier to review. Us-
ing the Z3 SMT solver, veri�cation �nishes within about
15 minutes on an 8-core machine.

The current prototype of Hyperkernel runs on a unipro-
cessor system; verifying multiprocessor support is beyond
the scope of this paper. We choose not to verify the kernel
initialization and glue code (e.g., assembly for register save
and restore), instead relying on a set of custom checkers to
improve con�dence in their correctness.
To demonstrate the usability of the kernel interface, we

have ported xv6 user programs to Hyperkernel, including
utilities and a shell. We have also ported the xv6 journaling
�le system and the lwIP networking stack, both running as
user-space processes. We have developed several applica-
tions, including a Linux binary emulator and a web server
that can host the Git repository of this paper.
In summary, this paper makes two main contributions: a

push-button approach to building a veri�ed OS kernel, and a
kernel interface design amenable to SMT solving. The careful
design of the kernel interface is key to achieving a high de-
gree of proof automation—naïvely applying the Hyperkernel
approach to verifying an existing kernel is unlikely to scale.
We chose xv6 as a starting point as it provides classic Unix
abstractions, with the �nal Hyperkernel interface, which is
amenable to automated veri�cation, resembling an exoker-
nel [23, 33]. We hope that our experience can provide inspira-
tion for designing other “push-button veri�able” interfaces.



Workflow

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

Hyperkernel: Push-Bu�on Verification of an OS Kernel SOSP’17, October 2017, Shanghai, China

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

Hyperkernel interface, which is amenable to automated ver-
i�cation, resembles some features of an exokernel [18, 25].
We hope that our experience can shed some light on what
“push-button veri�able” interfaces may look like.

The rest of this paper is organized as follows. §2 gives
an overview of the veri�cation process. §3 presents formal
de�nitions and veri�cation details. §4 describes the design
and implementation of Hyperkernel and user-space libraries.
§5 discusses checkers as extensions to our veri�er. §6 reports
on our experience of Hyperkernel. §7 relates Hyperkernel
to prior work. §8 concludes.

2 OVERVIEW
This section illustrates the Hyperkernel development work-
�ow by walking through the design, speci�cation, and veri-
�cation of one system call.
As shown in Figure 3, to specify the desired behavior of

a system call, programmers write two forms of speci�ca-
tions: a detailed, state-machine speci�cation for functional
correctness, and a higher-level, declarative speci�cation that
is more intuitive for manual review. Both speci�cations are
expressed in Python; we chose Python due to its simple syn-
tax. Programmers implement a system call in C. The veri�er
will reduce both speci�cations (in Python) and the imple-
mentation (in LLVM IR compiled from C) into an SMT query,
and invoke Z3 to perform veri�cation. The veri�ed code is
linked with unveri�ed (trusted) components to produce the
�nal kernel image.

An advantage of using an SMT solver is its ability to pro-
duce a test case if veri�cation fails, which we �nd useful
for pinpointing and �xing bugs. For instance, if there is any
bug in the C code, the veri�er generates a concrete test case,
including the kernel state and system call arguments, to de-
scribe how to trigger the bug. Similarly, the veri�er tries to
show the violation if there is any inconsistency between the
two forms of speci�cations.
We assume the following for now (see §4 for detail): the

kernel runs on a uniprocessor system, with interrupts dis-
abled; therefore, every system call is atomic and runs to com-
pletion. The kernel is also in a separate address space from
user space, using the identity mapping for virtual memory.

2.1 Designing �nite interfaces
We base the Hyperkernel interface on existing speci�cations
such as POSIX, making adjustments where necessary to aid
push-button veri�cation. In particular, we make adjustments
to keep the kernel interface �nite, such that its semantics
can be expressed as a set of traces of bounded length. To
make veri�cation scalable, these bounds should be small
constants and ideally, independent of system parameters
(e.g., the maximum number of �le descriptors or pages).

declarative
speci�cation

state-machine
speci�cation veri�er proof or

test case

syscall/interrupt handler
& invariant

LLVM C
front-end LLVM IR

kernel initialization
& glue code

LLVM
compiler

kernel
image

Python

C & assembly

Figure 3: The Hyperkernel development �ow. Rectan-
gular boxes denote source, intermediate, and output
�les; rounded boxes denote compilers and veri�ers.
Shaded boxes denote source �les written by program-
mers.

To illustrate the design of �nite interfaces, we use the dup

system call as speci�ed by POSIX as a running example, to
show how to �nitize it for inclusion in Hyperkernel. In a
classic Unix design, each process maintains a �le descrip-
tor (FD) table, where a slot in this table refers to an entry
in a system-wide �le table. Figure 4 shows two example FD
tables, for processes i and j, along with a system-wide �le
table. The slot FD 0 in process i’s table refers to the �le table
entry 0, and both process i’s FD 1 and process j’s FD 0 refer
to the same �le table entry 4. To correctly manage resources,
the �le table maintains a reference counter for each entry:
entry 4’s counter is 2 as it is referred to by two FDs.

The POSIX semantics of dup(oldfd) is to create “a copy of
the �le descriptor oldfd, using the lowest-numbered unused
�le descriptor for the new descriptor” [39]. For example,
invoking dup(0) in process j would return FD 1 referring
to �le table entry 4, and increment that entry’s reference
counter to 3.

We consider the POSIX semantics of the dup interface to be
not �nite. To see why, observe that the lowest-FD semantics,
although rarely needed in practice [11], requires the kernel
implementation to check that every slot lower than the new
chosen FD is already occupied. As a result, allocating the
lowest FD requires a trace that increases with the size of the
FD table; veri�cation time would increase accordingly.

Hyperkernel �nitizes dup by changing the POSIX interface
to dup(oldfd, newfd), which requires user space to choose
a new FD number. To implement this interface, the kernel
simply checks whether a given newfd is unused. Such a check
requires a small, constant number of operations, irrespective
of the size of the FD table. This number puts an upper bound
on the length of any trace that a call to dup(oldfd, newfd)

2017-09-13 12:25 page 3 (pp. 1-17)



Demo

• Workflow
• Virtual	memory	management



Summary	of	Hyperkernel

• Feasible	to	verify	a	simple	Unix-like	OS	kernel
• Make	interface	finite,	“exokernel”-y
• Leverage	advances	in	HW	and	formal	methods

• Starting	point	for	verifying	applications+OS



Lessons	learned

• Event-driven	systems
• A	set	of	“atomic”	handlers
• Encode	finite	handlers	in	SMT
• Add	layers	(if	needed)	to	scale	up	verification

• Co-design	systems	w/	SMT
• Use	effectively	decidable	theories	whenever	possible
• Restricted	use	of	quantifiers



Conclusion

• Push-button	verification
• Examples:	file	system,	OS	kernel
• Reusable	design	patterns	and	toolchains

• Verifiability	as	a	first-class	system	design	concern







Deployability
• Run	a	hypervisor	as	a	guest	on	a	verified	shim.
• Enforce	memory	is	protected	from	other	guests	and	
from	hypervisor.
• Rely	on	hypervisor	for	device	and	policy	
implementation.

Verified Shim

Hypervisor GuestGuest



Key	design	ideas

• Explicit	resource	allocation	and	reclamation
• Require	user	space	to	make	decisions	about	resources,	
eliminating	need	for	allocators	or	garbage	collectors	in	
kernel

• Finitize system	call	interface
• Should	complete	in	constant	time,	independent	of	
parameters,	eliminating	need	to	reason	about	loops	or	
long-running	system	calls


