
Verifying enclave systems 
with Serval

Luke Nelson 
w/ James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, Xi Wang 

University of Washington, Columbia University, Microsoft Research

!1

Open Source Enclave Workshop 
July 2019 
Berkeley, CA



Enclave monitors are hard to get right

● Correctness of enclave monitor code is critical for security 

● Many different kinds of bugs are security vulnerabilities: 

○ Low-level bugs: e.g., buffer overflow or division-by-zero 

○ Logic bugs: implementation does something unintended 

○ Design bugs: intended design of the system is not secure 

● Each can be exploited to compromise the entire system

!2



Eliminating bugs with formal verification

● Goal: prove absence of low-level, logic, and design bugs 

● Approach: Use automated verification techniques 

● Low proof burden: symbolic evaluation / SMT solvers 

● Bounded loops in code, likely true of monitors 

● Limitations: no concurrency or side channels

!3



Challenges

● Difficulty of building verifiers 

● Need detailed RISC-V machine model 

● Need to reason at ISA level 

● Difficulty of scaling to practical systems 

● Symbolic evaluation 

● SMT solving

!4



Serval: A framework for verifying low-level systems

● Built on top of Rosette 

● Lift ISA interpreter into verifier 

● Easier to write and test 

● Supports LLVM IR and RISC-V 

● Use symbolic profiling to identify verification bottlenecks 

● Use symbolic optimizations to scale verification

!5



Main Results

● Applied to CertiKOS (PLDI’16) and Komodo (SOSP’17), 

previously manually verified using Coq and Dafny 

● Found and fixed 15 Linux BPF JIT bugs, all now upstreamed. 
○ https://git.kernel.org/linus/1e692f09e091 

○ https://git.kernel.org/linus/46dd3d7d287b 

○ https://git.kernel.org/linus/68a8357ec15b 

○ https://git.kernel.org/linus/6fa632e719ee 

● Work in progress: identified implementation and design bugs 

in Keystone

!6

https://git.kernel.org/linus/1e692f09e091
https://git.kernel.org/linus/46dd3d7d287b
https://git.kernel.org/linus/68a8357ec15b
https://git.kernel.org/linus/6fa632e719ee


Outline

● Verification stack 
● Workflow 
● Demo

!7



Verification stack

!8

Rosette Symbolic 
evaluation

Symbolic 
profiling

Symbolic 
reflection

Inputs System 
implementation

System 
specification

Serval Automated 
verifiers

Symbolic 
optimizations

Solver Satisfiability 
checking

Counterexample 
generation



[1/3] Proving absence of low-level bugs

!9

C program

LLVM IR + UBsan 
checks

Clang

Serval LLVM 
verifier



[2/3] Proving functional correctness

!10

!s1

!t1

!s2

!t2

Abstraction 
function

Monitor call RISC-V 
instructions from GCC

Monitor call 
specification



[3/3] Proving noninterference

● Example: bogus monitor call that returns enclave secrets 
● Integrity — OS should not be able to modify enclave-

visible state 
● Confidentiality — Behavior of OS is independent of 

enclave secrets

!11

OS Enclave 1 Enclave 2

Monitor



Demo: Komodo

● A verified software enclave monitor 

● We have ported to RISC-V and verified using Serval 

● Demonstration: 

● Low-level buffer overflow vulnerability

!12



Demo

!13



Conclusion

● Automated verification is effective at eliminating bugs in 
low-level systems 

● If you are building enclave systems, talk to us! 
● Paper to appear at SOSP’19 
● Code will be released shortly

!14

https://serval.unsat.systems/


