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Enclave monitors are hard to get right

● Correctness of enclave monitor code is critical for security 

● Many different kinds of bugs are security vulnerabilities: 

○ Low-level bugs: e.g., buffer overflow or division-by-zero 

○ Logic bugs: implementation does something unintended 

○ Design bugs: intended design of the system is not secure 

● Each can be exploited to compromise the entire system
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Eliminating bugs with formal verification

● Goal: prove absence of low-level, logic, and design bugs 

● Approach: Use automated verification techniques 

● Low proof burden: symbolic evaluation / SMT solvers 

● Bounded loops in code, likely true of monitors 

● Limitations: no concurrency or side channels
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Challenges

● Difficulty of building verifiers 

● Need detailed RISC-V machine model 

● Need to reason at ISA level 

● Difficulty of scaling to practical systems 

● Symbolic evaluation 

● SMT solving
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Serval: A framework for verifying low-level systems

● Built on top of Rosette 

● Lift ISA interpreter into verifier 

● Easier to write and test 

● Supports LLVM IR and RISC-V 

● Use symbolic profiling to identify verification bottlenecks 

● Use symbolic optimizations to scale verification
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Main Results

● Applied to CertiKOS (PLDI’16) and Komodo (SOSP’17), 

previously manually verified using Coq and Dafny 

● Found and fixed 15 Linux BPF JIT bugs, all now upstreamed. 
○ https://git.kernel.org/linus/1e692f09e091 

○ https://git.kernel.org/linus/46dd3d7d287b 

○ https://git.kernel.org/linus/68a8357ec15b 

○ https://git.kernel.org/linus/6fa632e719ee 

● Work in progress: identified implementation and design bugs 

in Keystone
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Outline

● Verification stack 
● Workflow 
● Demo
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Verification stack
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[1/3] Proving absence of low-level bugs
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[2/3] Proving functional correctness
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[3/3] Proving noninterference

● Example: bogus monitor call that returns enclave secrets 
● Integrity — OS should not be able to modify enclave-

visible state 
● Confidentiality — Behavior of OS is independent of 

enclave secrets
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Demo: Komodo

● A verified software enclave monitor 

● We have ported to RISC-V and verified using Serval 

● Demonstration: 

● Low-level buffer overflow vulnerability

!12



Demo
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Conclusion

● Automated verification is effective at eliminating bugs in 
low-level systems 

● If you are building enclave systems, talk to us! 
● Paper to appear at SOSP’19 
● Code will be released shortly
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