Open Source Enclave Workshop
July 2019
Berkeley, CA

Verifying enclave systems
with Serval

L uke Nelson

w/ James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, Xi Wang
University of Washington, Columbia University, Microsoft Research

PAUL G. ALLEN SCHOOL ﬁﬂ
OF COMPUTER SCIENCE & ENGINEERING
UNIVERSITY of WASHINGTON U N S 1




Enclave monitors are hard to get right

e Correctness of enclave monitor code is critical for security

e Many different kinds of bugs are security vulnerabilities:
o Low-level bugs: e.g., buffer overflow or division-by-zero
o Logic bugs: implementation does something unintended
o Design bugs: intended design of the system is not secure

e Each can be exploited to compromise the entire system



Eliminating bugs with formal verification

e Goal: prove absence of low-level, logic, and design bugs

e Approach: Use automated verification techniques
e Low proof burden: symbolic evaluation / SMT solvers
e Bounded loops in code, likely true of monitors

e Limitations: no concurrency or side channels



Challenges

e Difficulty of building verifiers
e Need detailed RISC-V machine model
e Need to reason at [SA level

e Difficulty of scaling to practical systems
e Symbolic evaluation

e SMT solving



Serval: A framework for verifying low-level systems

e Built on top of Rosette
e Lift ISA interpreter into verifier
e Easier to write and test
e Supports LLVM IR and RISC-V
e Use symbolic profiling to identify verification bottlenecks

e Use symbolic optimizations to scale verification



Main Results

e Applied to CertiKOS (PLDI’16) and Komodo (SOSP’17),
previously manually verified using Coq and Dafny

e Found and fixed 15 Linux BPF JIT bugs, all now upstreamed.

o https://qit.kernel.org/linus/1e692f09e091
o https://qgit.kernel.org/linus/46dd3d7d287b
o https://qit.kernel.org/linus/68a8357ec15b
o https://qit.kernel.org/linus/6fa632e719ee

e Work in progress: identified implementation and design bugs

iIn Keystone


https://git.kernel.org/linus/1e692f09e091
https://git.kernel.org/linus/46dd3d7d287b
https://git.kernel.org/linus/68a8357ec15b
https://git.kernel.org/linus/6fa632e719ee

Outline

e \/erification stack
e \Workflow
e Demo



Verification stack

Inouts System System
P implementation specification
Automated Symbolic
Serval g o
verifiers optimizations
Rosette Symbqllc Sym_b_ollc Symbqllc
evaluation profiling reflection
Solver Satisfiability Counterexample
checking generation




[1/3] Proving absence of low-level bugs

C program

l

Clang

l

LLVM IR + UBsan
checks

l

Serval LLVM
verifier




[2/3] Proving functional correctness

Monitor call
specification
l’ >
1
A A
Abstraction
function
S 1 Monitor call RISC-V S 2

instructions from GCC

10



[3/3] Proving noninterference

OS Enclave 1 Enclave 2

e Example: bogus monitor call that returns enclave secrets

e Integrity — OS should not be able to modify enclave-
visible state

e Confidentiality — Behavior of OS is independent of
enclave secrets

1



Demo: Komodo

e A verified software enclave monitor

e \We have ported to RISC-V and verified using Serval

e Demonstration:

e Low-level buffer overflow vulnerability

12



Demo

13



Conclusion

e Automated verification is effective at eliminating bugs in
low-level systems
e |f you are building enclave systems, talk to us!

e Paper to appear at SOSP’19
e Code will be released shortly

https://serval.unsat.systems/

UNSAT




